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In this work, we introduce an efficient computational scheme, based on the macro basis function method, to ana-
lyze the scattering of a plane wave by V-shaped plasmonic optical nanoantennas. The polarization currents and
scattered fields for the both symmetric and antisymmetric excitations are investigated. We investigate how the
resonant frequency of the plasmonic V-shaped nanoantenna is tailored by engineering the geometrical parameters
and by changing the polarization state of the incident plane wave. The computational model presented herein is
faster by many orders of magnitude than commercially available finite methods, and is capable of characterizing
all nanoantennas comprised of junctions and bends of nanorods. © 2014 Optical Society of America
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1. INTRODUCTION
Plasmonic nanoantennas have recently been used in photovol-
taic devices, biosensing, nonlinear optics, quantum optics,
and optical circuits [1,2]. Wire plasmonic nanoantennas re-
cently have been studied and characterized, which allow only
one scattered electric field component along the nanorod axis
[3,4]. However, controlling the polarization state of photons
is required in some optical applications, e.g., cryptography,
optical computing, and communications [5]. Cross-resonant
plasmonic nanoantennas consisting of two perpendicular
plasmonic dipole antennas have been shown that are capable
of converting propagating fields of any polarization state into
correspondingly polarized, localized, and enhanced fields and
vice versa [6,7]. Other plasmonic nanoantennas comprised of
junctions that connect six or eight monopoles have been
introduced to obtain a broadband spectral response when
illuminated with circular and elliptical polarizations [8].

The basic idea to make plasmonic wire nanoantennas
capable of illustrating versatile polarization states for photons
is realized by having a set of noncollinear monopoles. In this
configuration, each monopole radiates an electric field polar-
ized in parallel to the corresponding axis. Because the monop-
oles are not collinear, different polarization states for the total
scattered field are achieved. The simplest way to get a non-
collinear set of coupled monopoles is by introducing a
V-shaped plasmonic nanoantenna consisting of two arms of
equal length L∕2 connected at one end at an angle Δ, as illus-
trated in Fig. 1.

There recently has been significant interest in V-shaped
plasmonic nanoantennas because of their special phase re-
sponse when spatially tailoring their geometry, i.e., L and

Δ, in an array [9]. Such arrays of plasmonic V-antennas have
been shown that are capable of molding the wavefront of the
reflected and refracted beams in a nearly arbitrary way. The
other advantages of V-shaped plasmonic nanoantennas are
the ease of fabricating planar antennas of nanoscale thickness
and the fact that such V-shaped antennas consist of plasmonic
nanorod resonators having widely tailorable optical proper-
ties [10,11]. The main question is how we can analyze effi-
ciently and quickly the optical performance of the V-shaped
plasmonic antenna to investigate its importance as a funda-
mental nanoelement in plasmonic optics in changing the
polarization state and phase of photons, while giving rise to
the geometrically tunable resonances to get a strong enough
magnitude of the scattered field.

To facilitate the design of optical metamaterials comprising
V-shaped nanoantennas, an efficient formulation is needed
to quantify their optical performance. Conventional electro-
magnetic-simulation (EM) packages, which usually use a
finite difference time-domain (FDTD) technique, are often
either inaccurate or highly time- and memory-consuming. This
is mainly because FDTD requires a fine meshing to character-
ize the thin cross-sections of the nanorod comprised of disper-
sive and negative-permittivity material [12,13].

The macro basis function (MBF) method has been found to
be a time- and memory-efficient technique for analyzing the
scattering from the plasmonic nanorod antennas [13], and also
for the scattering analysis of elements comprising junctions of
wires and strips in the microwave regime [14]. The main ad-
vantages of utilizing the MBFmethod are (1) they demonstrate
a relatively small-sized and well-conditioned matrix equation;
(2) they are faster in speed and require less memory, by 4 to
10 orders of magnitude, than the conventional numerical
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methods; (3) they propose a computationally efficient scheme
to model the current at the junction of elements, e.g., cross-
shaped elements, by satisfying Kirchhoff current law (KCL)
and obviating the need to handle fictitious singularities of
the electric field generated by piecewise sinusoidal Basis
Functions at the junction [14]; (4) they demonstrate the
closed-form formula for the radiated electric field generated
by MBFs [13]; and (5) they are compatible with the character-
istic basis function method to efficiently characterize the scat-
tering performance of infinite and large finite clusters of
metamaterials [15]. In this work, we use the MBF method
to analyze the scattering performance of the V-shaped plas-
monic nanoantenna to take advantage of all the above-
mentioned improving features.

2. SCATTERING FROM A PLASMONIC
V-SHAPED NANOANTENNA
This section demonstrates the formulation for the problem at
hand. Figure 1(a) demonstrates a V-shaped plasmonic nano-
antenna located in the xy plane, which consists of two arms
of equal length L∕2 � 75 nm and equal radius a � 7.5 nm con-
nected at one end at an angle Δ. One arm is along the x axis
and the other arm is along the v axis. We parameterize the
combination of the v- and x-axes with the u parameter such
that 0 ≤ u ≤ L [see Fig. 1(a)]. Both arms are made of silver, by
which its permittivity is characterized by Drude model, i.e.,
εr � εr∞ − f 2p∕�f �f − jf d��, with εr∞ � 5, f p � 2175 THz and
f d � 4.35 THz, where f p is the plasma frequency and f d is
the damping frequency [13]. We define two unit vectors to de-
scribe the orientation of a V-antenna: ŝ, along the symmetry
axis of the antenna (the bisector of the angle Δ) and â,
perpendicular to ŝ [see Fig. 1(a)]. V-antennas support “sym-
metric” and “antisymmetric” modes [see Figs. 1(b) and 1(c)]
[9]. Physically, for a single plasmonic nanorod antenna illumi-
nated by an arbitrarily incident plane wave [13], the longi-
tudinal polarization current is excited by the vector
component of the incident electric field, which is directed
along the axis of the nanorod (let us neglect the effect of
the transverse polarization current in the cross-section of

the nanorod because of the thin cross-section). Keeping this
in mind, for the symmetric excitation, when the incident elec-
tric field is along ŝ [see Fig. 1(b)], the polarization current in
each arm is directed from the junction end toward the open
end of the corresponding arm. Similarly for the antisymmetric
excitation, when the incident electric field is along â as de-
picted in Fig. 1(c), by projecting the incident electric field onto
each arm, the direction of the currents is along x̂ (for the x
arm) and v̂ (for the v arm), respectively. The incident wave
vector k for both symmetric and antisymmetric modes is
inward and normal to the plane of the device, i.e., −ẑ [see
Figs. 1(b) and 1(c)].

One way to solve the scattering performance of a dielectric
body of relative permittivity εr , illuminated by the incident
electric field EInc, is using the volume-equivalent theorem
[16]. In this theorem, we replace the dielectric material with
a polarization current density J. The electric field radiated by
such a polarization current density is then equivalent to the
field EScat scattered by the original dielectric body. The polari-
zation current density is proportional to the total electric field
ETot, the summation of the incident and scattered electric
field, as

J � jωε0�εr − 1�ETot; (1)

where ejωt time dependency for the electric field and polari-
zation current is assumed and suppressed. The first author
has applied the volume-equivalent theorem to efficiently char-
acterize the optical scattering performance of plasmonic
nanorods in [13]. We use the same theorem in this work for
scattering analysis of the V-shaped plasmonic nanoantennas.

By using Eq. (1), the equivalent polarization current on the
V-antenna, flowing along the v- and x-directions for the v- and
x-arms, respectively, satisfies the following set of polarization
equations [13]:

�
Escat
vv � Escat

vx � Einc
v � ζIv�v� on v-arm

Escat
xv � Escat

xx � Einc
x � ζIx�x� on x-arm

; �2�

where EScat
wt is the w-component of the electric field scattered

by the t-arm, t; w ∈ fv; xg, which is measured along a line seg-
ment on the top of the surface of the t-arm parallel to its axis.
Because the normal to the plane of the V-antenna is the z axis
(see Fig. 1), the location of the observation line segment is at
z � a, i.e., the distance between the observation line segment
on the t-arm and the axis of the t-arm is equal to the radius of
the nanorod. Einc

t is the t-component of the incident electric
field on the t-arm. The It�t� in Eq. (2) is the polarization
current flowing on the axis of the t-arm, which is an
unknown function yet to be determined. And finally, ζ �
−jη∕�πa2k�εr − 1��, where η and k are the intrinsic impedance
and wave number of the free space, respectively.

To solve Eq. (2) with the MBF method according to the rec-
ipe discussed in [13], we expand the polarization current in
terms of 2N − 1 piecewise sinusoidal MBFs [see Fig. 1(d)].
The first and the last MBFs, #1 and 2N − 1, are half MBFs with
the domain width of H to model the nonzero current at the
two ends of the V-antenna. The other MBFs are full triangular
sinusoidal basis functions with the domain width of 2H. The
MBF#N at the junction is the composite MBF comprised of a
half-MBF on the v-arm and another half-MBF on the x-arm

Fig. 1. (a) Geometry of V-shaped plasmonic nanoantennas. (b) Sym-
metric mode. (c) Antisymmetric mode. (d) Discretization of the polari-
zation current.
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with equal current at the junction, i.e., Iv�v � L∕2� �
Ix�x � 0�, which automatically satisfies the KCL.

The details about the current distribution and the radiated
electric field associated with piecewise sinusoidal MBFs have
been discussed in [13]. However, for the sake of simplicity, we
only bring the resultant formulas into our work. Let us con-
sider a full triangular-sinusoidal MBF, including left and right
half MBFs as shown in Fig. 2. In this example, the axis of the
nanorod is along the z axis; therefore, for the problem at hand
(V-shaped nanoantenna in Fig. 1), the proper coordinate rota-
tions must be carried out to use the electric field expressions
which we present for the MBFs in Fig. 2. The current is as-
sumed to exist only at the axis of the rod along the z- direction.
The current is assumed to have a triangular-sinusoidal varia-
tion given by Iz � sin�β�H − jz0j��, where −H < z0 < H. The
z-component of the electric field radiated by the right-half
MBF, 0 < z0 < H, is given by

Gzz �
−jη
4π

�
e−jkR1

R1
−
e−jkR0

R0
�cos�kH� � j

z
R0

sin�kH��

−z sin�kH� e
−jkR0

kR3
0

�
; (3)

where R0 and R1 are the distances from the observation
point to the middle (z0 � 0) and the right end (z0 � H) of
the MBF depicted in Fig. 2. Similarly, as derived in [13], the
x-component of the electric field radiated by the right-half
MBF depicted in Fig. 2 is

Gxz �
jηx
4πρ2

�
z
�
e−jkR1

R1
−
e−jkR0

R0

�
cos�kH� � j

z
R0

sin�kH�
��

� sin�kH�ρ2 e
−jkR0

kR3
0

−H
e−jkR1

R1

�
: (4)

For the y-component of the radiated electric field by the
right-half MBF depicted in Fig. 2, it is sufficient to replace
the observation component y by x. The electric field radiated
by the left-half MBF depicted in Fig. 2 (for which −H < z0 < 0)
is obtained from Eqs. (3),(4) when H is replaced by −H.

After expanding the arm currents Iv�v� and Ix�x� in terms of
MBFs defined in Fig. 1, we expand the electric fields radiated
by the arm currents EScat

wt , where t; w ∈ fv; xg in terms of the
electric field radiated by each MBF, using the closed form for-
mulas presented in Eqs. (3),(4) and the corresponding rotation
of coordinate system. We therefore have 2N − 1 unknowns as-
sociated with the 2N − 1weighting coefficients of MBFs. If we
multiply both sides of Eq. (2) by each of the MBFs defined in

Fig. 1, and take the integration along the MBF domain
(Galerkin’s testing) [13], we achieve a �2N − 1� × �2N − 1�
matrix equation. The integration in the Galerkin’s testing is
carried out using the Gaussian quadrature rule (GQR) [13].
For each arm, 20 observation points in GQR render the
scheme convergent. Solving the resultant matrix equation
leads to finding the polarization current and, therefore, we
compute the scattered field by the nanoantenna. We need
to mention that the size of the matrix equation to reach to
a convergent result is relatively small, e.g., only a 5 × 5 matrix
equation (for 100 THz ≤f ≤ 400 THz) or a 7 × 7 matrix
equation (for 400 THz<f ≤ 600 THz) can efficiently and accu-
rately model the scattering from the V-shaped plasmonic
nanoantenna.

3. SYMMETRIC AND ANTISYMMETRIC
EXCITATIONS
For the symmetric and antisymmetric excitations at f �
200 THz and for different values of angle Δ, the magnitude
and phase of the polarization currents are plotted versus u∕L
in Figs. 3 and 4. In Fig. 3(a), the current is zero at the junction
for the symmetric excitation. This happens because the KCL is
set at the junction and is also due to the symmetric excitation
[see Fig. 1(b)]. Only a zero current can be present at the junc-
tion because of these two constraints. The other observation
in Fig. 3(a) is that for Δ � 180°, in which the two arms are
collinear and the V-antenna degenerates to a nanorod, there
is no polarization current generated by the symmetric excita-
tion. This is because, in this case, the incident electric field is
perpendicular to the axis of the nanorod and is not coupled to
any longitudinal plasmonic mode in the nanorod.

In Fig. 3(b), for the symmetric excitation, the phase of the
polarization current jumps as much as 180° at the junction,
which is consistent with the physics, i.e., KCL and symmetric
excitation, described previously. On the other hand, the mag-
nitude of the current for the antisymmetric case, in Fig. 4(a),
has a peak value at the junction, and the phase at the junction
is continuous and almost flat over the V-antenna for 0 ≤ u ≤ L.
The condition number for the 5 × 5 impedance matrix is only
35.8 at f � 200 THz for Δ � 30°, which is a well-conditioned

Fig. 2. Full-triangular sinusoidal MBF including right and left MBFs.
The current flows along the axis.

Fig. 3. Polarization current of the V-shaped plasmonic antenna illu-
minated by a symmetric excitation at f � 200 THz (λ � 1.5 μm) for
different values of the angle Δ. (a) Magnitude, (b) phase.
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matrix. The condition number is even better for greater an-
gles; e.g., for Δ � 180°, the condition number is only 6.8.

The scattered field by the plasmonic V-antenna is the
electric field radiated by the determined polarization current.
Traditionally the electric field radiated by the given current
can be found by performing the convolution of the free space
Dyadic Green’s function (DGF) and the current. Our computa-
tional model obviates the need of using DGFs, because the
polarization current in the V-antenna is a superposition of
piecewise sinusoidal MBFs and the electric field radiated
by each MBF is obtained in a closed-form formula, as de-
scribed before via Eqs. (3),(4).

Figures 5 and 6 illustrate the magnitude and phase of the
scattered field by the plasmonic V-shaped nanoantenna ob-
served at r � 4.5 �μm�ẑ (3λ at 200 THz) for symmetric and anti-
symmetric modes, respectively. It is interesting to note that
for the plasmonic V-antenna, the polarization state of the scat-
tered photons is the same as that of the incident light when the
latter is polarized along â or ŝ. This means the scattered field is
symmetric when the V-antenna is illuminated by a symmetric
excitation and is antisymmetric when illuminated by an
antisymmetric incident field. This property of the plasmonic
V-antenna allows one to design the polarization of the scat-
tered light [9].

In Fig. 5(a), for the symmetric mode, the first-order reso-
nant frequency for which the magnitude of the scattered field
is maximum occurs when the length of each arm is around one
half of the effective wavelength, i.e., L∕2 � λeff∕2, because ac-
cording to Fig. 3, the current distribution in each arm approx-
imates that of an individual straight antenna of length L∕2 [9].

According to the approximated algebraic formula for the
effective wavelength for a plasmonic nanorod given by No-
votny [17], the first-order resonant frequency for the symmet-
ric mode for the silver V-antenna studied herein is around
f res � 415 THz. According to our computation depicted in
Fig. 5(a), f res varies from 469 THz (for Δ � 30°) to 441 THz
(for Δ � 150°). The main reason that the resonant frequency
of the V-shaped nanoantenna is different from Novotny’s re-
sult is because in Novotny’s formula only one single (isolated)
arm is considered, while here we have two arms. Also, there is
an electromagnetic coupling between the arms’ polarization
currents that makes the resonant frequency to deviate from
that given by Novotny for an isolated arm. It is interesting
to note that the deviation in the resonant frequency is in-
creased for the case Δ � 30° (in which the arms are closer
and more coupled) compared to Δ � 150°, where there is less
coupling between the arms.

In Fig. 4(b), we observe that the phase of the scattered field
across the resonance changes appreciably, which makes the

Fig. 4. Polarization current of the V-shaped plasmonic antenna illu-
minated by an antisymmetric excitation at f � 200 THz (λ � 1.5 μm)
for different values of the angle Δ. (a) Magnitude, (b) phase.

Fig. 5. Scattered field from the V-shaped plasmonic antenna illumi-
nated by a symmetric excitation for different values of the angle Δ.
(a) Magnitude, (b) phase.

Fig. 6. Scattered field from the V-shaped plasmonic antenna illumi-
nated by an antisymmetric excitation for different values of the angle
Δ. (a) Magnitude, (b) phase.
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plasmonic V-shaped antenna capable of being utilized as an
optical resonator to design the magnitude, phase, and polari-
zation state of the scattered light [9]. Similarly, for the anti-
symmetric excitation, one can conclude that the first-order
resonance occurs when L � λeff∕2, which is roughly f res �
292 THz. More accurately, according to Fig. 6(a), for the anti-
symmetric excitation, f res varies from 214 THz (for Δ � 30°)
to 260 THz (for Δ � 180°). To facilitate the observation of
appreciable phase variation of the scattered field around
the resonance, in Fig. 7, for the antisymmetric case, the phase
of the scattered field shifted from that of the scattered field for
Δ � 180°, i.e., ∠EScatt

a �Δ� − ∠EScatt
a �Δ � 180°� is plotted ver-

sus the frequency for different Δ angles.
As the frequency increases, the V-antenna gets higher res-

onant modes. According to Figs. 5(a) and 6(a), the first reso-
nant frequency of the antisymmetric case is lower than the
symmetric case because (as we explained previously) the ef-
fective resonance wavelength is larger for the antisymmetric
excitation. The second resonance of the antisymmetric case
occurs lower than 600 THz and varies from 402 THz (for
Δ � 30°) to 554 THz (for Δ � 180°). For the symmetric case,
the second resonance occurs higher than 700 THz according
to Fig. 5(a) and varies as the angle Δ changes.

As a summary, by changing the polarization of the incident
electric field from symmetric to antisymmetric, the resonant
frequency of the V-shaped antenna shifted significantly. More-
over, the resonant frequency can be tuned by changing the
angle Δ or the length L, i.e., we get two degrees of freedom.
This is the geometrically tunable double-resonance property
of the V-shaped plasmonic nanoantenna.

The other interesting observation in Figs. 5 and 6 is that by
decreasing the angle Δ, the resonant frequency increases
(blueshift) for the symmetric mode, and decreases (redshift)
for the antisymmetric mode. For the special case in which Δ is
small, because of the current directions for the arms con-
nected at the junction, decreasing the angle Δ for the symmet-
ric mode corresponds to having an equivalent nanorod with
higher effective radius because the currents are in the same
direction [see Fig. 1(b)]. This observation agrees with the re-
sult of the algebraic formula for the effective wavelength for a
plasmonic nanorod given by Novotny [17], in which increasing
the radius of the nanorod gives rise to a blueshift. For the anti-
symmetric mode with a small Δ, by considering the opposite
directions for the current at the junction [Fig. 1(c)], the
composite arm will have the smaller equivalent radius (be-
cause the joint currents cancel each other), which gives rise
to a redshift. Also, because the currents tend to cancel each

other out (destructive effect), the peak of the scattered field
for the small Δ in the antisymmetric mode decreases signifi-
cantly [see Fig. 6(a)].

4. SCATTERING FROM PLASMONIC
V-ANTENNA
Next, we compare the results with those obtained from the
commercial software CST microwave studio (MWS), using
both time and frequency domain solvers. The plasmonic
V-antenna is made of silver whose permittivity is character-
ized by the Drude model that is described in Section 2. The
arm length of the V-antenna is L∕2 � 75 nm and the radius
is a � 7.5 nm. The angle of the V-antenna is equal to
Δ � 60°. The excitation is plane-wave with symmetric polari-
zation [as demonstrated in Fig. 1(b)]. The frequency range for
the incident plane wave is 100 THz < f < 600 THz. The total
(the sum of scattered and incident) field is measured by defin-
ing the electric field probes in CST MWS at r � 0.2 �μm�ẑ,
which is λ∕2.5 at higher frequency f � 600 THz, and thus in
the near-field region for the frequency range mentioned
above. The boundary condition is open for all six faces of
the boundary box. The faces of the boundary box are λ∕4
(at the lower frequency f � 100 THz) away from the origin
(the junction of the V-antenna).

For the time domain solver in CST MWS, we have used ∼28
million hexahedral mesh cells. In the mesh properties part of
the CST MWS, we set “Line per wavelength” equal to 80 in-
stead of the default value, which is 10. Moreover, in the
CST local mesh properties, we define the local edge refine-
ment factor equal to 10, instead of the default value 1, just
to make sure that the thin arms of the plasmonic V-antenna
are discretized very well in order to reach to a computational
convergence for the energy convergence criterion equal to the
−80 dB level. The CPU running time for the CST time domain
solver is around 2 days on an Intel(R) Xeon(R) CPU having
two 2.40 GHz processors. However it takes only 1 s∕200 fre-
quency samples for the MBF method on the same machine to
compute the scattered field on the entire frequency band re-
gardless of the location of the observation point.

For the frequency domain solver in CST MWS, we have
used ∼800; 000 tetrahedral mesh cells. In the mesh properties
part of the CST MWS, we set “steps per wavelength” equal to 6
instead of the default value, which is 4, just to make sure that
the thin arms of the plasmonic V-antenna are discretized very
well in order to reach to a computational convergence. The
CPU running time for the CST frequency domain solver is
around 1 day on the computer described above.

Figure 8 demonstrates the comparison between the scat-
tered field obtained by MBFM, CST time domain, and CST fre-
quency domain solvers. As we observe, the result of the CST
frequency domain solver is pretty well matched to that of
MBFM. For the CST time domain solver, the only difference
is the magnitude of the peak of the resonance. This difference
is due to the fact that the CST time domain solver needs a very
fine mesh size for discretization of the arm cross-section of the
plasmonic V-antenna. We already have the local mesh cell size
equal to a∕24 to discretize the cross-section of the plasmonic
arms. Making the mesh size finer will drastically increase the
CPU running time.

The radiation patterns for the V-shaped antenna in the x–y
plane and in the plane including φ � 120° and φ � 300° are

Fig. 7. Phase of the scattered field for the antisymmetric case shifted
from the reference phase of the scattered field for Δ � 180°.
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shown in Fig. 9 at f � 450 THz (resonance) for the symmetric
excitation and for Δ � 60°. A good agreement between CST
and MBF method is observed. In Fig. 9, we observe that the
radiation pattern of the V-shaped antenna illuminated by the
symmetric plane-wave excitation has a toroidal shape whose
symmetric axis is along the bisector of the V-antenna, i.e.,
φ � 30°. The physical reason is that, because of the symmetric
excitation, the current distribution on each arm is the same (in
magnitude and phase) and is close to the current distribution
of a resonant dipole antenna. Thus, the x-arm and the v-arm

radiate toroidal-shaped patterns with the main lobes located
at φ1 � f90°; 270°g and φ2 � f150°; 330°g, respectively, in the
x–y plane. Hence, the resultant superimposed pattern is a
toroidal-shaped pattern with the main lobes placed at
φnet � �φ1 � φ2�∕2 � f120°; 300°g, according to Fig. 9(a) in
the x–y plane. The radiation pattern is omnidirectional [see
Fig. 9(b)] at the plane φnet comprised of φ � 120°
and φ � 300°.

5. CONCLUSIONS
In this work, we have introduced a computationally efficient,
strong, and fast technique to analyze the scattering of an op-
tical planewave from a plasmonic V-shaped nanoantenna. Our
technique is based on MBFM, which leads to a small-sized and
well-conditioned matrix equation constructed using closed-
form formula for the electric field radiated by piecewise sinus-
oidal MBFs. The technique explained in our work is 4 to 10
orders of magnitude faster than the time-domain and fre-
quency-domain solvers in CST MWS. Our computational
scheme can be used as a powerful engine for efficient analysis
and design optimization of large arrays of plasmonic configu-
rations comprised of junctions of monopoles.
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